
©

Student notes

Linux
Perfor mance Analysis and Tuning

06. Processors: usage

Nijmegen, The Netherlands

Copyright © AT Computing 2008, 2012, 2017
Version: 12a

©

2 06. Processors: usage

Student notes

During its life time, a thread within a process is almost continously switching states.
The current state is shown in the S column of the ps −l output:

$ ps −Lel

F S UID PID PPID LWP C PRI NI ADDR SZ WCHAN TTY TIME CMD

....

0 T 5 101 25246 17523 25246 0 80 0 − 27542 − pts/130 00:00:00 more

0 S 1 049 26143 26142 26143 0 80 0 − 37235 do –wai pts/181 00:00:00 bash

0 R 1 049 26164 26143 26164 0 80 0 − 29222 − pts/181 00:00:00 ps

State Running — on CPU (tool shows R)
At this very moment, the tread is burning CPU cycles, in user mode or in kernel
mode. The number of CPUs obviously puts an upper boundary to how many
threads can be in this state simultaneously. The output shown above is from a
single-CPU system. Enevitably, the ps command itself will be on the CPU in
this case while it is producing this output.

State Sleeping (tool shows S or D)
The thread is waiting for some event to happen. This situation only occurs
during the execution of a system call in kernel mode. The kernel programmer
decides to make this state interruptable by a signal (S) or not (D). Chapter
already covered this ‘‘Sleep and Wakeup’’ mechanism extensively.
The thread leaves this sleeping state when a different piece of kernel code
issues a wakeup call, because the waited-for event has occurred, or because a
signal arrived (the latter only in case of S).

State Running — wants CPU (tool shows R)
A thread leaving the sleeping state wants to go back to a CPU. However, the
number of CPUs is limited and most probably all CPUs are occupied by other
threads. Therefore, a woken-up thread initially enters this ‘‘waiting room’’
state1. As soon as a CPU becomes available, the CPU scheduler will select an
appropriate candidate from this waiting room and forces a context switch.

If a thread is about to switch from ‘‘running — wants CPU’’ to ‘‘running — on CPU’’, it
gets assigned a timeslice: a maximum amount of CPU time it will be allowed to
consume. If a thread voluntarily enters the sleeping state before its slice is over,
that’s called a ‘‘voluntary context switch’’ and is considered to be good behavior. If
the thread does not voluntarily give up its CPU before its slice is over, it will be
forcibly removed (pre-empted). It will be sent back to the waiting room with
‘‘running — wants CPU’’ threads and the CPU scheduler will select another thread to
run. This is called an ‘‘involuntary context switch’’ and is considered bad behavior.
File /proc/ pid /tasks/ tid /status contains the relevant counters.

1. Unfortunately, Linux uses the R both for ‘‘Running — on CPU’’ and ‘‘Running - wants CPU’’. Other
members of the UNIX family distinguish between ‘‘running’’ and ‘‘runnable’’ states.

©

06. Processors: usage 3

Notes

Figure 1

©

06. Processors: usage 4

Student notes

Each thread runs with a specific scheduling policy. This is inherited from the parent
process via the fork system call. The systemd or init daemon (PID 1) runs with
scheduling policy SCHED_NORMAL (a.k.a. SCHED_OTHER) which makes this the
default for all its descendents.

The SCHED_FIFO and SCHED_RR are for realtime processes. The threads of these
processes get a fixed priority on a scale from 1 (lowest) to 99 (highest). Suppose that
we start two realtime processes: one with priority 10 and the other one with priority
11 , and that we are running on a single CPU system. The thread with priority 10
will only be able to run if the priority 11 thread is sleeping. This holds true both for
the SCHED_FIFO and SCHED_RR policies.
However, if two realtime processes are started both with priority 10 , then a
difference between SCHED_FIFO and SCHED_RR shows up:

SCHED_FIFO

If one of the threads has got hold of the CPU, then the other can only get his
turn if the first one (the one on the CPU) enters the sleep state voluntarily, or
executes the special system call sched –yield .

SCHED_RR

If one of the threads has got hold of the CPU, and then consumes his entire
timeslice, the CPU will be taken awa y, and the thread will be put on the
runqueue behind the last thread of equal priority. The result is that the other
thread will get the CPU first. If only two threads share the same priority and
always fully consume their timeslice, they will thus get alternate turns on the
CPU.

The SCHED_NORMAL policy is meant for timesharing threads. These all get priority
0, which is below any realtime priority. However, these time sharing threads also
need some priority mechanism between them. This is regulated by their nice values.
The same holds for SCHED_BATCH.

The atop command shows the current policy per process/thread when using
keystroke s (or flag −s).
The chrt command is available to change policy and priority of a process. Setting a
higher priority or selecting a realtime policy requires privileges.
Examples:

chrt −r 17 myappl& ← start new program realtime, round-robin, priority 17

[1] 15463

chrt −p 15463 ← show policy and priority of process 15463

pid 15463’s current scheduling policy: SCHED –RR

pid 15463’s current scheduling priority: 17

chrt −p −f 19 15463 ← set policy fifo and priority 19 for process 15463

©

06. Processors: usage 5

Notes

Figure 2

©

06. Processors: usage 6

Student notes

Each thread (process) has a nice value, which is shown in the NI column of the
ps −l output:

$ ps −l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1 049 15317 15312 0 76 0 − 1156 wait4 pts/1 00:00:00 bash

0 R 1 049 15331 15317 0 95 0 − 5 51 − pts/1 00:00:00 ps

The nice value is partly responsible for the priority of the thread and thus can be
used to impose an artifical handicap or advantage upon a certain process (thread),
with respect to the other processes. The nice value as specified with the nice
command acts relative to the inherited value, as this example shows:

$ nice −n 14 bash ← activate new shell with lower priority

$ nice −n 3 ps −l ← start ps from new shell with even lower prio

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1 049 15317 15312 0 76 0 − 1156 wait4 pts/1 00:00:00 bash

0 S 1 049 15347 15317 0 89 1 4 − 1 156 wait4 pts/1 00:00:00 bash

0 R 1 049 15363 15347 0 95 1 7 − 5 51 − pts/1 00:00:00 ps

Specifying a negative value with the nice command is permitted with root
privileges. This will increase the priority of the program:

nice −n −13 sleep 10& ← sleep at high priority

ps −l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

4 S 0 1 5385 15368 0 67 −13 − 986 − pts/1 00:00:00 sleep

The renice command is available to modify the nice value of an already running
process. The value specified with it is an absolute value:

$ ps −l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1 049 15429 15317 0 76 0 − 9 86 − pts/1 00:00:00 sleep

$ renice 7 −p 15429 ← renice based on PID

15429: old priority 0, new priority 7

$ ps −l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1 049 15429 15317 0 87 7 − 9 86 − pts/1 00:00:00 sleep

$ renice 7 −u gerlof ← renice all processes owned by this user

1049: old priority 0, new priority 7

$ ps −l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1 049 15317 15312 0 82 7 − 1156 wait4 pts/1 00:00:00 bash

0 S 1 049 15429 15317 0 87 7 − 9 86 − pts/1 00:00:00 sleep

©

06. Processors: usage 7

Notes

Figure 3

©

06. Processors: usage 8

Student notes

The CPU scheduler by itself is not a process nor a thread; it is a kernel subroutine
(named schedule) that is called by the thread that still has a CPU, but wants to
switch to sleeping state. The subroutine is also called when a thread is taken off the
CPU because its timeslice is over. This schedule subroutine selects a successor to
the current thread from the runqueue of that CPU (i.e. the threads in ‘‘Running —
wants CPU’’ state). Then it arranges for the context switch to that successor thread.

The scheduler has a number of considerations to take into account:

• Always prefer a realtime thread (policy SCHED_FIFO or SCHED_RR) over a
timeharing thread (policy SCHED_NORMAL or SCHED_BATCH).

• Make sure that interactive processes get a good response time, even if they
compete with heavy batch processes that don’t have an artificially increased nice
value (decreased priority).

• Make sure that a CPU-intensive timesharing thread does not monopolize its CPU.
This is the purpose of the timeslice, which we have discussed earlier.

• Allow a user to artificially influence a priority, via the nice mechanism for time
sharing processes, and the POSIX-priority for realtime processes.

• Prevent total starvation of a low priority thread (e.g. a thread running with nice
value +19). They shouldn’t get much CPU time, but a few crumbs are a
minimum.

• Multiprocessor consideration:
Preferably assign a thread to the same CPU that it had last time, to seize upon
the opportunity that some of its text or data may still be present in the L1, L2, or
L3 caches, and because its MMU translation tables might still be present in the
‘‘Translation Lookaside Buffer’’ (TLB). Assigning a thread to a different CPU

causes the context switch to be more laborious, and requires text and/or data to
be retrieved from main memory into the caches of that newly assigned CPU again.

• Multiprocessor consideration:
A user should have the possibility to explicitly assign the thread(s) of a process to
a particular CPU. The default is to select an arbitrary CPU for each context
switch, obviously taking CPU affinity (see previous bullet) into account.

• NUMA consideration:
Preferably assign a thread to the a CPU on the same NUMA node that also holds
the memory pages of of the process involved.

• NUMA consideration:
A user should have the possibility to explicitly assign the thread(s) of a process to
a particular node.

©

06. Processors: usage 9

Notes

Figure 4

©

06. Processors: usage 10

Student notes

The so-called ‘‘O(1)’’ scheduler implementation was introduced in the 2.6 kernel and
survived until version 2.6.22. It has 140 priorities numbered 0-139 . A lower
priority number means a higher effective priority.

The range 0-99 is reserved for realtime threads (SCHED_FIFO and SCHED_RR). The
POSIX 1.b standard defines priority number 0 to be the lowest, and 99 to be the
highest. The Linux kernel has inverted this. Therefore, the POSIX priority rt –prio
is subtracted from 99 to calculate the Linux priority: POSIX priority 99 thus becomes
Linux priority 0 (highest) and POSIX priority 1 becomes Linux priority 98 (lowest).
Real time priorities are static, and therefore independent of the thread’s behavior.
The nice value has no influence on the priority of realtime threads, although the nice
value is used to calculate the length of the timeslice for threads with SCHED_RR

policy, similar to the timeslice calculation for timesharing threads.

The priority range 100 -139 has been reserved for timesharing threads
(SCHED_NORMAL and SCHED_BATCH). This corresponds to priority 0 of the POSIX 1.b
standard. The calculation of the priority of a timesharing thread is based upon the
nice value (more or less static) and the recent behavior (varies). The nice value, with
120 added to it, is used as the base for the calculation. Since the range of the nice
values is −20 till +19 this new range becomes 100 -139 , which produces the
timesharing range that we saw at the start of this paragraph.
To get at the actual priority, a behavioral component is added to this base value.
This component ranges from +5 (bad behavior) to −5 (good behavior). Bad behavior
means that this thread recently used much CPU time (state ‘‘Running — on CPU’’).
Good behavior means that the thread recently spent sufficient time in the sleeping
state. This mechanism makes sure that an interactive process can peacefully co-
exist with a heavy batch process, even if they have identical nice values: the batch
process consumes much CPU time, which decreases its own priority.

Whenever a timesharing thread has been chosen by the scheduler, a timeslice will be
calculated — the maximum time that this thread is allowed to use the CPU. This
also holds for a realtime thread with policy SCHED_RR (in case there is another
running thread with the same priority). The duration of the timeslice is determined
by the nice value, according to two disjunct linear scales, one for the positive and one
for the negative nice values:

Nice value Time slice

−20 800 msec
| | ← 35 milliseconds per nice-point
0 100 msec
| | ← 5 milliseconds per nice-point

+19 5 msec

Notice that the timeslice values are independent of the number of threads in the
runqueue, which means that the scaling is bad.

©

06. Processors: usage 11

Notes

Figure 5

©

06. Processors: usage 12

Student notes

Kernel version 2.6.23 introduced an entirely new scheduling model. It contains
different scheduling classes. This is a hierarchical model in which an overall
regulator (the scheduler core) calls upon a number of ‘‘sub-schedulers’’ in a defined
sequence. A ‘‘scheduling class’’ is the implementation of one of these ‘‘sub-
schedulers’’. The first ‘‘Running — wants CPU’’ thread to be delivered by a sub-
scheduler will be selected, and a context switch follows.

Currently, four standard scheduling classes are available.
The first class to be called upon is the deadline class. This class checks if a deadline
thread in state ‘‘Running — wants CPU’’ needs some runtime on the processor. If so,
it presents that thread to the scheduler core. Alternatively, it reports that no
suitable thread could be found.

If no suitable deadline thread could be found, the scheduler core calls upon is the
realtime class. It will check for the presence of realtime processes in ‘‘Running —
wants CPU’’ state, and present the one with the highest priority to the scheduler
core. Otherwise, it reports that no suitable thread could be found.

If no suitable realtime thread could be found, the scheduler core calls upon the fair
class. This class scans the collection of time sharing threads in ‘‘Running — wants
CPU’’ state, selects the best candidate, and delivers it to the scheduler core. But this
again can possibly find no candidate at all.

If no suitable time sharing thread could be found, the idle class will be called upon.
This always is the lowest one in the hierachy, and will deliver the so-called idle
thread that each CPU has. This is a thread that stops the CPU until other threads
switch to ‘‘Running — wants CPU’’ state again.

This model is open-ended, and allows for new classes, programmed as kernel
modules, to be inserted in between the existing ones.

Every scheduling class implements one or more policies. In the next slides, the
implementation of the deadline class, the realtime class and the fair class will be
covered.
The following classes/policies have been defined:

Class Policy Numerical policy

realtime SCHED_FIFO 1
realtime SCHED_RR 2
fair SCHED_NORMAL 0
fair SCHED_BATCH 3
fair SCHED_IDLE 5
deadline SCHED_DEADLINE 6
(future) SCHED_ISO 4

The current scheduling policy of a thread can be found in the file
/proc/ pid /task/ tid /sched as the numerical value policy (numerical value of
the scheduling policies as shown in the table above).

©

06. Processors: usage 13

Notes

Figure 6

©

06. Processors: usage 14

Student notes

From this page onwards, the mentioned CFS scheduler classes are discussed in
detail....

