
$Timing(1m): start slide around 0s$

Welcome to this talk about Linux performance analysis and tuning with atop.

My name is JC van Winkel.

In my previous job, I was developing courses and teaching with AT
Computing, a small spin off of the University of Nijmegen, the Netherlands.

We taught a lot of Linux classes and classes about languages stemming
from the UNIX world, like C, C++, Python, perl.

There was also a class about Linux Performance analysis and Tuning class,
which used atop a lot. And yes, the AT in atop stems from the name of the
company.
It is open source, mostly written by Gerlof Langeveld and some contributions
by me.
As linux gets more and more capabilities, atop is developed further to also
be able to monitor those.

You can read all about atop at www.atoptool.nl

Linux System and process analysis with atop 2022-06-16

Linux
System and process

analysis with atop

JC van Winkel

Many thanks to Gerlof Langeveld, main author of atop.
www.atoptool.nl

http://www.atoptool.nl

Tux logo: https://commons.wikimedia.org/wiki/File:Tux.svg, License: The
copyright holder of this file allows anyone to use it for any purpose, provided that
the copyright holder is properly attributed. Redistribution, derivative work, commercial
use, and all other use is permitted.
Attribution: lewing@isc.tamu.edu Larry Ewing and The GIMP

Steoscope Image by
https://vectorportal.com/vector/stethoscope-image/22292 License
https://creativecommons.org/licenses/by/4.0/

https://commons.wikimedia.org/wiki/File:Tux.svg
https://en.wikipedia.org/wiki/GIMP
https://vectorportal.com/vector/stethoscope-image/22292
https://creativecommons.org/licenses/by/4.0/

$Timing(3m): start slide around 1m$

Often performance analysis comes after complaints. Then one should know
that, as with most troubleshooting, this is a iterative process

We start at the complaint.
● Make use of the many metrics that are being kept by the kernel
● Having some understanding of how the system works, we can zoom

in: find other information and more detailed information from the
metrics

● After several rounds of this, we can start improving things
● Your reflex might be: Buy a bigger (or more) machine(s)

However:
● most probable candidate: the application itself.

○ Consulting example: for (i=0; i<strlen(s); i++) { s is not changed
here…. } where s was very long.

● Next thing could be limiting the workload or spreading the workload
more over time

● Kernel configuration can help but requires quite some knowledge
about the workings the kernel, including cpu/IO schedulters, the paging

Linux System and process analysis with atop 2022-06-16

Performance analysis: complaint → improvement

improve

application

workload

limitation

rules of thumb?
knowledge!

tools

workload

distribution

kernel

configuration

extra
hardware

measure

understand

 c
om

pl
ai

nt

counter
 pool

● mechanism etc.
● Only after all the options mentioned above should you consider

upgrading hardware.

$Timing(2m): start slide around 4m$

The most common reason for analysis:
● Bad response times when using the system interactively. This

means usually that the system feels slow now. i.e. you could look
at measuring tools now

● Bad throughput. Here we're talking about slowness some time
over the total processing of the job. i.e. when you look at the
measuring tools, there may be nothing to see right now.

The problems can be
● happening all the time. This is easy to analyze (time frame wise)
● occurring irregularly. The system is not always slow. Harder to

analyze, you need historic data for that.

Linux System and process analysis with atop 2022-06-16

Complaint

Reason for analysis
● interactive use:

bad response times (seconds)

● batch processing:
throughput (transactions/second)

Nature of complaint
● structural

◗ system always slow
◗ analysis easy (at any moment)

● incidental
◗ system sometimes slow
◗ analysis of historical data

(logging necessary)

$Timing(3m): start slide around 6m$

In this talk we will look at four potential bottlenecks

● CPU. We will want it to always have some "spare room" Note
that this can be difficult to measure, especially when frequency
scaling, turbo frequencies, thermal throttling and hyperthreading
take place

● Memory. Having swapping is a bad sign. But even a system
without any swapping that is currently using a lot of memory may
feel slower as less memory is available for the page cache

● Spinning disks. These have a limited number of IOPS they can
deliver. Getting close to 100% of that will lead to very long
queues and hence waiting time. When swapping to disk, this may
be even worse.

● Network interfaces. Here it is hard to give clear rules of thumb.

Tux logo: https://commons.wikimedia.org/wiki/File:Tux.svg, License: The
copyright holder of this file allows anyone to use it for any purpose, provided that

Linux System and process analysis with atop 2022-06-16

Potential bottlenecks
Overload of certain hardware resources

● processor(s)

rule of thumb*): < 80% per CPU

● memory

rule of thumb*): limited swapout
(preferably none)

● Spinning disk(s)

rule of thumb*): < 65% per disk

● network interface(s)

rule of thumb*): ?

*) Beware of rules of
thumb!

https://commons.wikimedia.org/wiki/File:Tux.svg

the copyright holder is properly attributed. Redistribution, derivative work, commercial
use, and all other use is permitted.
Attribution: lewing@isc.tamu.edu Larry Ewing and The GIMP
Bottle:
https://www.publicdomainpictures.net/en/view-image.php?image=3939
7&picture=wine-bottle-blank-label License: CC0 Public Domain

https://en.wikipedia.org/wiki/GIMP
https://www.publicdomainpictures.net/en/view-image.php?image=39397&picture=wine-bottle-blank-label
https://www.publicdomainpictures.net/en/view-image.php?image=39397&picture=wine-bottle-blank-label
http://creativecommons.org/publicdomain/zero/1.0/

$Timing(1m): start slide around 9m$

Before we continue, I will give a brief overview of how memory is managed
in Linux systems

Linux System and process analysis with atop 2022-06-16

Memory management (simplified)

 kernel (static)

free

$Timing(1m): start slide around 10m$

Before we continue, I will give a brief overview of how memory is managed
in Linux systems

In a just-booted system, there will basically only be memory being used by
the kernel:

● The base kernel itself as loaded while booting
● some dynamically growing and shrinking memory for use by the

kernel. This could be dynamically loaded modules, but also memory
for data structures (the process table, open files table, network
connections etc etc)

Linux System and process analysis with atop 2022-06-16

Memory management (simplified)

 kernel (dynamic)

 kernel (static)

free

$Timing(1m): start slide around 11m$

Before we continue, I will give a brief overview of how memory is managed
in Linux systems

In a just-booted system, there will basically only be memory being used by
the kernel:

● The base kernel itself as loaded while booting
● some dynamically growing and shrinking memory for use by the

kernel. This could be dynamically loaded modules, but also memory
for data structures (the process table, open files table, network
connections etc etc)

Next, when processes are started, their binary code is loaded from disk into
memory. Processes can also grow by requesting dynamic memory (think:
malloc).

Linux System and process analysis with atop 2022-06-16

Memory management (simplified)

 kernel (dynamic)

 process 1

 kernel (static)

 process 2
 process 3
 process 4

free

executable
file

$Timing(1m): start slide around 12m$

Before we continue, I will give a brief overview of how memory is managed
in Linux systems

In a just-booted system, there will basically only be memory being used by
the kernel:

● The base kernel itself as loaded while booting
● some dynamically growing and shrinking memory for use by the

kernel. This could be dynamically loaded modules, but also memory
for data structures (the process table, open files table, network
connections etc etc)

Next, when processes are started, their binary code is loaded from disk into
memory. Processes can also grow by requesting dynamic memory (think:
malloc).

Memory that is not in use by the processes, will be used to by the kernel for
the page cache. As files are read and written, the kernel keeps the blocks in
memory in case the same is to be read again. This can save a lot of disk IO.
The kernel wil always make sure there is a little but of memory free so when

Linux System and process analysis with atop 2022-06-16

Memory management (simplified)

 kernel (dynamic)

 process 1

 kernel (static)

 process 2
 process 3
 process 4

page
cache

free

executable
file

starting a new process (or when a process decides to grow its memory
footprint) we don't have to shrink the page cache right away. Like keeping a
rainy day fund.

$Timing(1m): start slide around 13m$

Before we continue, I will give a brief overview of how memory is managed
in Linux systems

In a just-booted system, there will basically only be memory being used by
the kernel:

● The base kernel itself as loaded while booting
● some dynamically growing and shrinking memory for use by the

kernel. This could be dynamically loaded modules, but also memory
for data structures (the process table, open files table, network
connections etc etc)

Next, when processes are started, their binary code is loaded from disk into
memory. Processes can also grow by requesting dynamic memory (think:
malloc).

Memory that is not in use by the processes, will be used to by the kernel for
the page cache. As files are read and written, the kernel keeps the blocks in
memory in case the same is to be read again. This can save a lot of (slow)
disk IO. The kernel wil always make sure there is a little but of memory free

Linux System and process analysis with atop 2022-06-16

Memory management (simplified)

 kernel (dynamic)

 process 1

 kernel (static)

 process 2
 process 3

 process 4

page
cache

free

executable
file

 process 5

so when starting a new process (or when a process decides to grow its
memory footprint) we don't have to shrink the page cache right away. A bit
like keeping a rainy day fund.

When more memory is needed for a new process, the page cache will shrink

$Timing(2m): start slide around 14m$

Before we continue, I will give a brief overview of how memory is managed
in Linux systems

In a just-booted system, there will basically only be memory being used by
the kernel:

● The base kernel itself as loaded while booting
● some dynamically growing and shrinking memory for use by the

kernel. This could be dynamically loaded modules, but also memory
for data structures (the process table, open files table, network
connections etc etc)

Next, when processes are started, their binary code is loaded from disk into
memory. Processes can also grow by requesting dynamic memory (think:
malloc).

Memory that is not in use by the processes, will be used to by the kernel for
the page cache. As files are read and written, the kernel keeps the blocks in
memory in case the same is to be read again. This can save a lot of (slow)
disk IO. The kernel wil always make sure there is a little but of memory free

Linux System and process analysis with atop 2022-06-16

Memory management (simplified)

 kernel (dynamic)

 process 1

 kernel (static)

 process 2

free

swap
space

executable
file

 process 4

page
cache

 process 5

process 3

so when starting a new process (or when a process decides to grow its
memory footprint) we don't have to shrink the page cache right away. A bit
like keeping a rainy day fund.

When more memory is needed for a new process, the page cache will shrink

If even more memory is needed (e.g. by a process starting to use more
dynamically allocated memory (malloc), something has to give. The kernel
will start searching for memory that can be made available. Parts of
processes that have not been used for longer time may be discarded (e.g.
for code pages) or they can be written to the swap space. Should a program
then reference that (no longer available) memory, some empty space is
searched for and the relevant page is loaded back from the swap space.

This is a normal process (imagine a process that had a lot of start-up code
but once the program has been initialized, keeping that startup code in
memory is a waste.) But if we start moving memory to swap even though it is
being used actively, we may get into a state where a lot of memory accesses
need a disk access. We call this state "thrashing". You will notice the
system can do nothing.

$Timing(3m): start slide around 16m$

There are many tools available on Linux for measuring the state of your
system

● sar allows you to do measurements of CPU, Memory, Disk and
network activity. Because it can be told take periodic snapshots and
log thise, you can also see what happened "last night around 21:15". It
cannot tell you what process was using this, just a total on the system

● vmstat and iostat can give you information about processor, memory
(vmstat) and IO (iostat), but only "in the moment". These two also only
look at the total system state

● top is a very popular tool that does allow you to look at both the system
state and the per-process state, but only for CPU and memory usage,
not for IO and network. Also, it does not do logging so you cannot
inspect previous "episodes" when the system was misbehaving

● atop (www.atoptool.nl) can do all of these. And with the help of a
kernel module, also downloadable (source) from www.atoptool.nl, you
can even get per process network bandwidth consumption, right now
and in the past.

Linux System and process analysis with atop 2022-06-16

Generic tools sarvmstat iostat top atop

Live measurements ✔ ✔ ✔ ✔ ✔
Historical data (logging) ✔ ✘ ✘ ✘ ✔

System-level data
Processor ✔ ✔ ✔ ✔ ✔
Memory ✔ ✔ ✘ ✔ ✔
Disk ✔ ✘ ✔ ✘ ✔
Network ✔ ✘ ✘ ✘ ✔

Process-level data
Processor ✘ ✘ ✘ ✔ ✔
Memory ✘ ✘ ✘ ✔ ✔
Disk ✘ ✘ ✘ ✘ ✔
Network ✘ ✘ ✘ ✘ ✔

 with netatop
 kernel module

Overview generic measurement tools

http://www.atoptool.nl
http://www.atoptool.nl

$Timing(4m): start slide around 19m

Here we see the "generic" output page of atop.

The top part of the screen is overall system state, with indicators in red (and
blinking) for resources that are (close to) overloading (according to some
rules of thumb)
We can see lines for:

● CPU and Processes (PRC/CPU/CPL). This includes the number of
processes, the number of exited processes (5 here), interrupts and the
load averages.

● Memory, swapping and page activity. Here we see that 197 pages
have been swapped out and that 213673 pages were scanned to see if
we can swap them

● Disk activity (LVM/MDD/DSK). This lists the %busy (sdb is busy here
84% of the time), reads and writes and more.

● Network (tranport, IP, interface). Here we see how much the network
layers were doing.

For Processes, we see the same categories:
● SYSCPY, USRCPU: CPU usage since the last snapshot

Linux System and process analysis with atop 2022-06-16

ATOP - robin 2022/03/11 14:10:36 -------------- 10s elapsed
PRC | sys 2.49s | user 10.93s | #proc 311 | #zombie 0 | #exit 5 |
CPU | sys 27% | user 113% | irq 3% | idle 188% | wait 69% |
CPL | avg1 1.77 | avg5 0.80 | avg15 0.69 | csw 135876 | intr 109271 |
MEM | tot 7.7G | free 126.7M | cache 5.3G | buff 0.0M | slab 559.5M |
SWP | tot 10.0G | free 9.1G | | vmcom 5.4G | vmlim 13.9G |
PAG | scan 213673 | steal 213442 | swin 0 | swout 197 | oomkill 0 |
LVM | tos_ssd-root | busy 84% | read 23675 | write 0 | avio 0.35 ms |
LVM | tos_hdd-bulk | busy 9% | read 1776 | write 16 | avio 0.52 ms |
LVM | tos_hdd-swap | busy 0% | read 0 | write 197 | avio 0.22 ms |
DSK | sdb | busy 84% | read 23670 | write 3 | avio 0.35 ms |
DSK | sda | busy 9% | read 1774 | write 17 | avio 0.52 ms |
NET | transport | tcpi 89665 | tcpo 170355 | udpi 0 | udpo 0 |
NET | network | ipi 89667 | ipo 170355 | ipfrw 0 | deliv 89665 |
NET | enp2s0 19% | pcki 89681 | pcko 170355 | si 4940 Kbps | so 195 Mbps |

 PID SYSCPU USRCPU VGROW RGROW RDDSK WRDSK RNET SNET CPU CMD 1/5
32558 0.30s 9.44s 1312K 1212K 0K 0K 0 0 99% ssh
32559 0.80s 0.82s 0K -4K 0K 0K 89601 170e3 17% ssh
32552 0.40s 0.06s 0K 0K - - 0 0 5% <grep>
32557 0.33s 0.02s 0K 0K 222.1M 0K 0 0 4% scp
 2915 0.21s 0.05s 17392K 4100K 0K 0K 0 0 3% Xorg
 3949 0.05s 0.19s 0K -228K 0K 0K 0 0 2% gnome-shell
 4329 0.03s 0.14s 0K -452K 0K 0K 0 0 2% firefox
 58 0.17s 0.00s 0K 0K 0K 0K 0 0 2% kswapd0
27166 0.03s 0.02s 0K 0K 0K 0K 0 0 1% atop
21232 0.01s 0.02s 0K -596K 0K 0K 0 0 0% soffice.bin
....

Measure with 'atop' – example generic output

● VGROW, RGROW: virtual/resident memory growth since the last
snapshot

● RDDSK, WRDSK: the volume of disk reads/writes since the last
snapshot

● RNET, SNET: the number of TCP/UDP packets received/sent since
the last snapshot

Note that if you make your screen wider, there will be more information. For
example, the CPU line will show the frequency scaling that is going on, the
memory line will show how many pages in the cache are dirty (waiting to be
written out) and for processes, you can see the number of theads and the
amount of schedule waiting time it has encountered.

$Timing(2m): start slide around 23m$

An important difference between top and atop, is that atop turns on process
accounting, making it possible to keep track of processes that have exited
since the last snapshot.

The graph shows why this is important.

● For process A, both top and atop will show the same: the measured
resource consumption up to T1 and up to T2l

● For process B, top will only report about the consumption at T1, but it
does not show how much it used at T2. atop will show all o this

● For process C, top won't even know that it existed. Atop will report on
the resources it consumed during its existence, eventhough it did not
exist at either snapshot.

Note that this means that for top, the "processes" part of the screen will not
sum up to what is shown in the "System" part of the screen, but atop will.

Linux System and process analysis with atop 2022-06-16

Measure with 'atop' – features (1)
Characteristics
● utilization of all relevant hardware resources

◗ CPUs
◗ memory and swap space
◗ disks and logical volumes (LVM)
◗ network layers (including NFS)

● resource utilization of all processes

even when processes have terminated (via process accounting)

process B

process C

process A

T 1 T 2

colors in case
of overload

$Timing(2m): start slide around 25m$

atop can be instructed to make regular snapshots of the entire system. You
can read these recorded files and see what happened.

You can then walk through these logs with the regular atop interface, where
't' will skip to the next snapshot and 'T' will get you back to the previous one.

Linux System and process analysis with atop 2022-06-16

Measure with 'atop' – features (2)
Data recording
● permanent recording (default interval: 10 minutes)

• branch to interval (b)
• next interval (t)
• previous interval (T)

rewind (r)

◗ daily logfiles stored in directory /var/log/atop

● incidental recording

● file format might change: convert with command atopconvert

$ atop -r today's data since midnight
$ atop -r 20220223 data of specific date
$ atop -r yy data of day before yesterday

$ atop -w /tmp/trial.atop 60 10 record 10 intervals of 60 seconds
$ atop -r /tmp/trial.atop data of specific date

$Timing(2m): start slide around 27m$

atop has several ways to slide and dice your data:

● You can zoom in on individual threads (y)
● You can select to per process get more data about a specific resource

(eg more memory info, more disk IO details, memory etc)
● You can sort not just on CPU consumption, but also over the other

resources

Linux System and process analysis with atop 2022-06-16

Measure with 'atop' – features (3)
Characteristics
● dynamic scaling for additional columns (wider screens)

● per interval only show

◗ utilized system resources (all system resources: f)
◗ active processes/threads (all processes/threads: a) scroll with arrow keys

● show individual threads for multi-threaded processes (y)

● select process/thread information

◗ generic – default (g) various (v) disk (d)
◗ scheduling (s) memory (m) network (n)

● sort criterion with same metrics

◗ cpu (C) disk (D) autofocus (A)
◗ memory (M) network (N)

$Timing(2m): start slide around 29m$

You can tell atop to filter in the process view

You can tell atop to add up all the resource usage per user, program-name
or container

Linux System and process analysis with atop 2022-06-16

Measure with 'atop' – features (4)
Other characteristics
● filter processes: view only

◗ per user (U) – regular expression
◗ program name (P) – regular expression
◗ command line info (/) – regular expression
◗ PIDs (I) – comma-separated list
◗ per container (J) – container ID

● accumulate utilization of processes

◗ per user (u)
◗ per program (p)
◗ per container (j)

● miscellaneous

◗ pause measurement (z) interval (i) full command line (c)
◗ utilization per second (1) kill (k)

$Timing(1m): start slide around 31m$

Since atop logs data, it can be interesting to also use atop in a pipeline to
create reports.

Using the -P flag allows you to tell which system or process oriented values
you want to see.

Linux System and process analysis with atop 2022-06-16

● generate parseable output with -Plabel[,label]...
◗ guaranteed format and order of metrics
◗ for live and recorded measurements
◗ generic layout

◗ labels

• system level metrics: CPU, MEM, SWP, PAG, DSK, NET,
• process level metrics: PRC, PRM, PRD, PRN, PRG,

$ atop -r -PMEM,PRM
...
SEP
MEM systema 1520859311 2022/03/12 13:55:11 600 4096 1980942
PRM systema 1520859311 2022/03/12 13:55:11 600 1 (systemd) S
PRM systema 1520859311 2022/03/12 13:55:11 600 2 (kthreadd) S ...
...
SEP
...

Parsing data

label host epoch date time interval label-specific data

metrics for
one interval

Measure with 'atop' – features (5)

$Timing(2m): start slide around 32m$

Let's take a look at this case study:

On a system, we noticed that ntpd or chronyd was not running yesterday,
leading to the clock to skew.

With atop -r y | egrep '^ATOP|chronyd' we get the ATOP lines (with the time
stamp) and the chrony lines to show that chronyd was running

But we also see that it had exited in the snapshot of 15:59.

Lets start an interactive session and start at the snapshot of 15:59.

There we can see that cronyd exited with exit code 9 at 15:56:41, but also
that the kill command also exited at 15:56:41, run by root…

Linux System and process analysis with atop 2022-06-16

Measure with 'atop' – use case
Determine time/reason of process termination
● example: system time inaccurate because

ntpd/chronyd disappeared

$ atop -r y -b 15:59 -v interactive session
/chronyd
ATOP - systema 2022/03/12 15:59:01 -------------- 10m0s elapsed
....
 PID PPID RUID RGID STDATE STTIME ENDATE ENTIME ST EXC S CPU CMD
 1124 - chrony chrony 2022/03/12 08:55:12 2022/03/12 15:56:41 -S 9 E 0% <chronyd>
/kill
31622 - root root 2022/03/12 15:56:41 2022/03/12 15:56:41 NE 0 E 0% <kill>

$ atop -r y | egrep '^ATOP|chronyd'
....

ATOP - systema 2022/03/12 15:39:01 -------------- 10m0s elapsed
 1124 0.00s 0.00s 0K 0K 0K 0K 2 3 0% chronyd
ATOP - systema 2022/03/12 15:49:01 -------------- 10m0s elapsed
 1124 0.00s 0.01s 0K 0K 0K 0K 2 3 0% chronyd
ATOP - systema 2022/03/12 15:59:01 -------------- 10m0s elapsed
 1124 0.00s 0.00s 0K 0K - - 1 3 0% <chronyd>
ATOP - systema 2022/03/12 16:09:01 -------------- 10m0s elapsed
ATOP - systema 2022/03/12 16:19:01 -------------- 10m0s elapsed

$Timing(2m): start slide around 34m$

Let's now look at how the different lines in atop's system output and the
columns in the processes output relate.

We can see that can see that 3.05 user time was used, we also see which
processes those were. That includes exited processes (between angle
brackets and with an exit code listed). top would not take those into account.

By using the 's' command (scheduling) we get to see more scheduling
information, such as the priority, the number of theads in state R (running), I
(Interupptible sleep), U (uninterruptible sleep).

Linux System and process analysis with atop 2022-06-16

Measure with 'atop' – processor analysis

ATOP - nijmegen3 2016/07/31 10:40:33 10 seconds elapsed
PRC | sys 0.50s | user 3.05s | #proc 114 | #zombie 0 | #exit 4
CPU | sys 5% | user 31% | irq 0% | idle 163% | wait 1%
cpu | sys 3% | user 25% | irq 0% | idle 70% | cpu001 w 1%
cpu | sys 2% | user 5% | irq 0% | idle 92% | cpu000 w 0%

 PID SYSCPU USRCPU VGROW RGROW USERNAME THR ST EXC S CPU CMD
30261 0.18s 2.88s 15236K 10528K gerlof 1 N- - R 31% grep
 ? 0.11s 0.02s 0K 0K gerlof 0 NE 2 E 1% <grep>
30204 0.06s 0.05s 0K 0K gerlof 1 -- - S 1% sshd
30255 0.05s 0.02s 4120K 612K gerlof 1 N- - S 1% find
 ? 0.03s 0.03s 0K 0K gerlof 0 NE 2 E 1% <grep>
 ? 0.03s 0.02s 0K 0K gerlof 0 NE 2 E 0% <grep>
30198 0.02s 0.01s 0K 0K gerlof 1 -- - R 0% atop
 ? 0.02s 0.01s 0K 0K gerlof 0 NE 2 E 0% <grep>
27511 0.00s 0.01s 0K 0K gerlof 4 -- - S 0% soffice.bin
17668 0.00s 0.00s 0K 0K ntp 1 -- - S 0% ntpd
....

After keystroke s:

 PID TRUN TSLPI TSLPU POLI NICE PRI RTPR CURCPU ST EXC S CPU CMD
30261 1 0 0 norm 0 124 0 1 N- - R 31% grep
 ? 0 0 0 - - - - - NE 2 E 1% <grep>
30204 0 1 0 norm 0 115 0 1 -- - S 1% sshd
30255 0 1 0 norm 0 116 0 0 N- - S 1% find
...

ATOP – myhost 2022/02/23 10:40:33 10 seconds elapsed
PRC | sys 0.50s | user 3.05s | #proc 114 | #zombie 0 | #exit 4
CPU | sys 5% | user 31% | irq 0% | idle 163% | wait 1%
cpu | sys 3% | user 25% | irq 0% | idle 70% | cpu001 w 1%
cpu | sys 2% | user 5% | irq 0% | idle 92% | cpu000 w 0%

 PID SYSCPU USRCPU VGROW RGROW USERNAME THR ST EXC S CPU CMD
30261 0.18s 2.88s 15236K 10528K gerlof 1 N- - R 31% grep
 ? 0.11s 0.02s 0K 0K gerlof 0 NE 2 E 1% <grep>
30204 0.06s 0.05s 0K 0K gerlof 1 -- - S 1% sshd
30255 0.05s 0.02s 4120K 612K gerlof 1 N- - S 1% find
 ? 0.03s 0.03s 0K 0K gerlof 0 NE 2 E 1% <grep>
 ? 0.03s 0.02s 0K 0K gerlof 0 NE 2 E 0% <grep>
30198 0.02s 0.01s 0K 0K gerlof 1 -- - R 0% atop
 ? 0.02s 0.01s 0K 0K gerlof 0 NE 2 E 0% <grep>
27511 0.00s 0.01s 0K 0K gerlof 4 -- - S 0% soffice.bin
17668 0.00s 0.00s 0K 0K ntp 1 -- - S 0% ntpd
....
Keystroke s shows:

 PID TRUN TSLPI TSLPU POLI NICE PRI RTPR CURCPU ST EXC S CPU CMD
30261 1 0 0 norm 0 124 0 1 N- - R 31% grep
 ? 0 0 0 - - - - - NE 2 E 1% <grep>
30204 0 1 0 norm 0 115 0 1 -- - S 1% sshd
30255 0 1 0 norm 0 116 0 0 N- - S 1% find
...

$Timing(2m): start slide around 36m$

In the general overview, we will have information on a system level about
memory consumption: the amount of free memory, in the page cache (cache
+ buff) and the amount of dynamically allocated memory by the kernel

Per process, we can see how memory usage by the processes has grown
since the last snapshot, both the Virtuam footprint as the amount of that that
is actually resident in memory. It is one thing to know a process has a
certain footprint, but it is more intesting to see how much it is growing (just
like we are not so much interested in how much CPU time a process has
used up to know in its entire runtime, but it is interesting to see how much
extra CPU is has used since the last snapshot).

Typing m will give you more memory related data: page faults, the code
footprint. Making the terminal wider will also show you how much of the
footprint is shared, is in the swap space and how much memory is locked.

Linux System and process analysis with atop 2022-06-16

kernel

process A

process B

process C

Measure with 'atop' – memory analysis

swap

Keystroke m shows:

 PID MINFLT MAJFLT VSTEXT VSIZE RSIZE VGROW RGROW MEM CMD
27511 0 0 242K 246.3M 89788K 0K 0K 9% soffice.
27238 1 1 9516K 98.3M 32884K 0K 4K 3% firefox-
27251 0 0 2054K 19456K 10240K 0K -12K 1% gvim
17963 2 0 249K 21092K 6312K 0K 0K 1% httpd
17964 3 0 249K 20964K 6236K 0K 0K 1% httpd
.....

MEM | tot 993.8M | free 5.6M | cache 846M | buff 4.8M | slab 32.4M |
SWP | tot 2.0G | free 2.0G | | vmcom 398.3M | vmlim 2.5G |
PAG | scan 22440 | stall 55 | | swin 2 | swout 3 |

 PID SYSCPU USRCPU VGROW RGROW USERNAME THR ST EXC S CPU CMD
30484 0.46s 7.02s 1548K 1548K gerlof 1 -- - R 75% grep
27238 0.03s 0.27s 0K 4K wwwadm 5 -- - R 3% firefox-
30555 0.01s 0.15s 8640K 5616K root 1 N- - D 2% mrtg
27187 0.08s 0.07s 0K 0K wwwadm 1 -- - R 2% sshd
 43 0.04s 0.00s 0K 0K root 1 -- - S 0% kswapd0
27511 0.00s 0.03s 0K 0K gerlof 4 -- - R 0% soffice.
27470 0.01s 0.02s 0K 0K gerlof 1 -- - S 0% sshd
30198 0.01s 0.01s 0K 0K gerlof 1 -- - R 0% atop
17963 0.01s 0.00s 0K 0K apache 1 -- - S 0% httpd
30557 0.00s 0.01s 4088K 1844K mailman 1 N- - D 0% python
27251 0.00s 0.00s 0K -12K wwwadm 1 -- - S 0% gvim
17964 0.00s 0.00s 0K 0K apache 1 -- - S 0% httpd
17919 0.00s 0.00s 0K 0K root 1 -- - S 0% httpd
.....

page
cache

free

$Timing(2m): start slide around 38m$

For disk analysis, in the system area, atop shows # of reads writes and how
busy the disk or LVM volume is. More column will also show the volume of
the reads and writes.

Per process you can see the volume of data that was written by each
process since the previous snapshot

pressing 'd', also shows the number of writes that were cancelled.

Linux System and process analysis with atop 2022-06-16

Measure with 'atop' – disk analysis

LVM | vg00-lvusr | busy 95% | read 6668 | write 2592 | avio 1.17 ms |
LVM | vg00-lvhome | busy 2% | read 0 | write 28 | avio 9.21 ms |
LVM | vg00-lvroot | busy 1% | read 12 | write 15 | avio 5.00 ms |
LVM | vg00-lvvar | busy 1% | read 0 | write 10 | avio 10.9 ms |
DSK | sda | busy 95% | read 5439 | write 172 | avio 1.94 ms |

 PID SYSCPU USRCPU VGROW RGROW RDDSK WRDSK ST EXC S DSK CMD
14318 0.61s 0.04s 0K 0K 77132K 0K -- - D 95% grep
 1915 0.01s 0.00s 0K 0K 0K 3584K -- - D 4% jbd2/dm-5-8
 1959 0.00s 0.00s 0K 0K 0K 48K -- - S 0% flush-253:4
 1920 0.00s 0.00s 0K 0K 0K 28K -- - S 0% jbd2/dm-2-8
 2283 0.00s 0.00s 0K 0K 0K 4K -- - S 0% NetworkManager
 2749 0.00s 0.00s 0K 0K 0K 4K -- - S 0% ksmtuned
 494 0.00s 0.00s 0K 0K 0K 4K -- - S 0% jbd2/dm-0-8
 1905 0.00s 0.00s 0K 0K 0K 4K -- - S 0% jbd2/dm-4-8
 3771 0.03s 0.07s 0K 0K 0K 0K -- - S 0% plugin-contain
....

After keystroke d:

 PID TID RDDSK WRDSK WCANCL DSK CMD
14318 - 77132K 0K 0K 95% grep
 1915 - 0K 3584K 0K 4% jbd2/dm-5-8
 1959 - 0K 48K 0K 0% flush-253:4
 1920 - 0K 28K 0K 0% jbd2/dm-2-8
 2283 - 0K 4K 0K 0% NetworkManager
.....

LVM | vg00-lvusr | busy 95% | read 6668 | write 2592 | avio 1.17 ms |
LVM | vg00-lvhome | busy 2% | read 0 | write 28 | avio 9.21 ms |
LVM | vg00-lvroot | busy 1% | read 12 | write 15 | avio 5.00 ms |
LVM | vg00-lvvar | busy 1% | read 0 | write 10 | avio 10.9 ms |
DSK | sda | busy 95% | read 5439 | write 172 | avio 1.94 ms |

 PID SYSCPU USRCPU VGROW RGROW RDDSK WRDSK ST EXC S DSK CMD
14318 0.61s 0.04s 0K 0K 77132K 0K -- - D 95% grep
 1915 0.01s 0.00s 0K 0K 0K 3584K -- - D 4% jbd2/dm-5-8
 1959 0.00s 0.00s 0K 0K 0K 48K -- - S 0% flush-253:4
 1920 0.00s 0.00s 0K 0K 0K 28K -- - S 0% jbd2/dm-2-8
 2283 0.00s 0.00s 0K 0K 0K 4K -- - S 0% NetworkManager
 2749 0.00s 0.00s 0K 0K 0K 4K -- - S 0% ksmtuned
 494 0.00s 0.00s 0K 0K 0K 4K -- - S 0% jbd2/dm-0-8
 1905 0.00s 0.00s 0K 0K 0K 4K -- - S 0% jbd2/dm-4-8
 3771 0.03s 0.07s 0K 0K 0K 0K -- - S 0% plugin-contain
....
Keystroke d shows:

 PID TID RDDSK WRDSK WCANCL DSK CMD
14318 - 77132K 0K 0K 95% grep
 1915 - 0K 3584K 0K 4% jbd2/dm-5-8
 1959 - 0K 48K 0K 0% flush-253:4
 1920 - 0K 28K 0K 0% jbd2/dm-2-8
 2283 - 0K 4K 0K 0% NetworkManager
.....

$Timing(2m): start slide around 40m$

Finally, we can see system level networking information, not only on
transport (TCP/UDP), network (IP) and interface level, but if you use NFS, it
will also show lines for that.

Per process, we will see the number of TCP and UDP sends and receives
and the bandwidth in and out.

For per process information, the netatop module is required.

Linux System and process analysis with atop 2022-06-16

Measure with 'atop' – network analysis

NET | transport | tcpi 133548 | tcpo 18457 | udpi 2 | udpo 0 |
NET | network | ipi 133562 | ipo 18457 | ipfrw 0 | deliv 133559 |
NET | p5p1 76% | pcki 130078 | pcko 629402 | si 8618 Kbps | so 762 Mbps |

 PID SYSCPU USRCPU VGROW RGROW RDDSK WRDSK RNET SNET S NET CMD
14387 2.19s 0.12s 0K 0K 0K 0K 13e4 17e3 S 100% attract
14326 0.10s 0.15s 0K 4K 0K 0K 3426 1903 S 0% ssh
10316 0.00s 0.00s 0K 0K 0K 0K 20 10 S 0% ssh
 7135 0.10s 0.39s 0K 516K 0K 0K 12 8 S 0% thunderbird-bi
10310 0.00s 0.00s 0K 0K 0K 0K 1 2 S 0% ssh
 3655 0.45s 0.83s 232K 104K 0K 0K 0 0 S 0% gnome-terminal
.....

After keystroke n (with kernel module 'netatop'):

 PID TCPRCV TCPSND UDPRCV UDPSND BANDWI BANDWO NET CMD
14387 130084 16558 0 0 7284 Kbps 750 Mbps 100% attract
14326 3426 1903 0 0 1520 Kbps 109 Kbps 0% ssh
10316 20 10 0 0 1 Kbps 1 Kbps 0% ssh
 7135 12 8 0 0 0 Kbps 0 Kbps 0% thunderbird-bi
10310 1 2 0 0 0 Kbps 0 Kbps 0% ssh
 3655 0 0 0 0 0 Kbps 0 Kbps 0% gnome-terminal
.....

NET | transport | tcpi 133548 | tcpo 18457 | udpi 2 | udpo 0 |
NET | network | ipi 133562 | ipo 18457 | ipfrw 0 | deliv 133559 |
NET | eth0 75% | pcki 130078 | pcko 629402 | si 8818 Kbps | so 752 Mbps |

 PID SYSCPU USRCPU VGROW RGROW RDDSK WRDSK RNET SNET S NET CMD
14387 2.19s 0.12s 0K 0K 0K 0K 13e4 17e3 S 100% attract
14326 0.10s 0.15s 0K 4K 0K 0K 3426 1903 S 0% ssh
10316 0.00s 0.00s 0K 0K 0K 0K 20 10 S 0% ssh
 7135 0.10s 0.39s 0K 516K 0K 0K 12 8 S 0% thunderbird-bi
10310 0.00s 0.00s 0K 0K 0K 0K 1 2 S 0% ssh
 3655 0.45s 0.83s 232K 104K 0K 0K 0 0 S 0% gnome-terminal
.....

Keystroke n (with kernel module 'netatop') shows:

 PID TCPRCV TCPSND UDPRCV UDPSND BANDWI BANDWO NET CMD
14387 130084 16558 0 0 7284 Kbps 750 Mbps 100% attract
14326 3426 1903 0 0 1520 Kbps 109 Kbps 0% ssh
10316 20 10 0 0 1 Kbps 1 Kbps 0% ssh
 7135 12 8 0 0 0 Kbps 0 Kbps 0% thunderbird-bi
10310 1 2 0 0 0 Kbps 0 Kbps 0% ssh
 3655 0 0 0 0 0 Kbps 0 Kbps 0% gnome-terminal
.....

$Timing(10m): start slide around 42m$

The atop demo file used can be found here:
for atop 2.7: https://www.atoptool.nl/download/leakerdemo-2.7
for atop 2.8: https://www.atoptool.nl/download/leakerdemo-2.8

Download the file, then use:
atop -r <filename>
use "t" to step from snapshot to snapshot (and "T" to go back one snapshot)

20:50:17 system in use but in steady state, A youtube video is playing in
firefox, openoffice is used…
20:50:47 some memory users are started
20:51:17 no new usemems, memory pressure there, but still 1.6GB in cache
20:52:17 leaker is starting up, cache is shrinking
20:52:27 first swapouts happening, disk 14% busy
20:52:37 Kernel less happy, more swaps, disk 47% busy, firefox loses mem
20:52:57 swap disk 98% busy
20:53:37 leaker grows less aggressively, but is losing RSIZE
20:53:57 leaker exits, sdb now busy with reads
20:54:27 usemems leave, sdb relatively quiet

Linux System and process analysis with atop 2022-06-16

Live demo

A bold strategy :-)

Let's catch a memory leak…

https://www.atoptool.nl/download/leakerdemo-2.7
https://www.atoptool.nl/download/leakerdemo-2.8

$Timing(1m): start slide around 52m$

UNIX systems used to have a "System Activity Reporter" that uses logs that
were kept.

Since atop keeps logs as well, atop also offers a sar like interface with the
atopsar command.

Linux System and process analysis with atop 2022-06-16

Measure with 'atopsar' – features
Characteristics
● system reports

live: atopsar [-flags...] interval [samples]
past: atopsar [-flags...] [-r file|date|y...]

● examples: live CPU utilization

$ atopsar -c 60 5
myhost x86_64 2022/02/23

14:22:11 cpu %usr %nice %sys %irq %softirq %steal %wait %idle
14:23:11 all 2 0 8 1 1 0 88 0
14:24:11 all 32 0 38 1 1 0 28 0
14:25:11 all 43 0 45 2 1 0 0 9
14:26:11 all 2 0 2 1 1 0 15 79
14:27:11 all 2 0 1 0 0 0 11 86

$ atopsar -A -r 20220223
$ atopsar -A -r yyyyy

$Timing(1m): start slide around 53m$

Tux logo: https://commons.wikimedia.org/wiki/File:Tux.svg, License: The
copyright holder of this file allows anyone to use it for any purpose, provided that
the copyright holder is properly attributed. Redistribution, derivative work, commercial
use, and all other use is permitted.
Attribution: lewing@isc.tamu.edu Larry Ewing and The GIMP

Steoscope Image by
https://vectorportal.com/vector/stethoscope-image/22292 License
https://creativecommons.org/licenses/by/4.0/

Linux System and process analysis with atop 2022-06-16

Installation
Installation of atop/atopsar

● subdivide capacity of hardware resources
◗ limit resource utilization for group of processes/threads
◗ gather statistics for groups of processes/threads

● controller available per hardware resource (cpu, memory, disk, network)

● implemented as pseudo filesystem (similar to /proc)

◗ mount controller filesystem “filled” directory with all capacity for all tasks
◗ make subdirectories “filled” subdirectory to which capacity and tasks

 can be assigned

● used by
◗ systemd
◗ docker
◗

● distribution repository
◗ Ubuntu, Debian,
◗ RedHat, Fedora, … (from EPEL)

● website: www.atoptool.nl (RPM or source tarball)

● GitHub: git://github.com/atoptool/atop.git

Installation of netatop kernel module

● website www.atoptool.nl (source tarball)

https://commons.wikimedia.org/wiki/File:Tux.svg
https://en.wikipedia.org/wiki/GIMP
https://vectorportal.com/vector/stethoscope-image/22292
https://creativecommons.org/licenses/by/4.0/
http://www.atoptool.nl/
http://www.atoptool.nl/

